Compare commits
13 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2377c387c7 | ||
|
|
9358db6cee | ||
|
|
08c9d7db03 | ||
|
|
85c7ee980c | ||
|
|
7ea773e6a9 | ||
|
|
e3c4ff38fe | ||
|
|
8b1f87b1c0 | ||
|
|
c5e4cd9ab4 | ||
|
|
215e36e9ed | ||
|
|
e3ef622031 | ||
|
|
f16760c466 | ||
|
|
b36287e573 | ||
|
|
4df7aa284b |
5
.gitignore
vendored
5
.gitignore
vendored
@@ -48,4 +48,7 @@ tramp
|
||||
*_archive
|
||||
|
||||
# Trial temp
|
||||
_trial_temp
|
||||
_trial_temp
|
||||
|
||||
# OSX
|
||||
.DS_Store
|
||||
18
README.rst
18
README.rst
@@ -89,7 +89,7 @@ the power of machine learning algorithms:
|
||||
# text == "Thanks Sasha, I can't go any higher and is why I limited it to the\nhomepage."
|
||||
# signature == "John Doe\nvia mobile"
|
||||
|
||||
For machine learning talon currently uses `PyML`_ library to build SVM
|
||||
For machine learning talon currently uses the `scikit-learn`_ library to build SVM
|
||||
classifiers. The core of machine learning algorithm lays in
|
||||
``talon.signature.learning package``. It defines a set of features to
|
||||
apply to a message (``featurespace.py``), how data sets are built
|
||||
@@ -102,7 +102,21 @@ of features to the dataset we provide files ``classifier`` and
|
||||
used to load trained classifier. Those files should be regenerated every
|
||||
time the feature/data set is changed.
|
||||
|
||||
.. _PyML: http://pyml.sourceforge.net/
|
||||
To regenerate the model files, you can run
|
||||
|
||||
.. code:: sh
|
||||
|
||||
python train.py
|
||||
|
||||
or
|
||||
|
||||
.. code:: python
|
||||
|
||||
from talon.signature import EXTRACTOR_FILENAME, EXTRACTOR_DATA
|
||||
from talon.signature.learning.classifier import train, init
|
||||
train(init(), EXTRACTOR_DATA, EXTRACTOR_FILENAME)
|
||||
|
||||
.. _scikit-learn: http://scikit-learn.org
|
||||
.. _ENRON: https://www.cs.cmu.edu/~enron/
|
||||
|
||||
Research
|
||||
|
||||
95
setup.py
Normal file → Executable file
95
setup.py
Normal file → Executable file
@@ -1,13 +1,8 @@
|
||||
import os
|
||||
import sys
|
||||
import contextlib
|
||||
|
||||
from distutils.spawn import find_executable
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
|
||||
setup(name='talon',
|
||||
version='1.0.2',
|
||||
version='1.0.5',
|
||||
description=("Mailgun library "
|
||||
"to extract message quotations and signatures."),
|
||||
long_description=open("README.rst").read(),
|
||||
@@ -20,87 +15,15 @@ setup(name='talon',
|
||||
zip_safe=True,
|
||||
install_requires=[
|
||||
"lxml==2.3.3",
|
||||
"regex==0.1.20110315",
|
||||
"chardet==1.0.1",
|
||||
"dnspython==1.11.1",
|
||||
"regex>=1",
|
||||
"html2text",
|
||||
"nose==1.2.1",
|
||||
"numpy",
|
||||
"scipy",
|
||||
"scikit-learn==0.16.1", # pickled versions of classifier, else rebuild
|
||||
],
|
||||
tests_require=[
|
||||
"mock",
|
||||
"coverage",
|
||||
"flanker"
|
||||
"nose>=1.2.1",
|
||||
"coverage"
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def install_pyml():
|
||||
'''
|
||||
Downloads and installs PyML
|
||||
'''
|
||||
try:
|
||||
import PyML
|
||||
except:
|
||||
pass
|
||||
else:
|
||||
return
|
||||
|
||||
# install numpy first
|
||||
pip('install numpy==1.6.1 --upgrade')
|
||||
|
||||
pyml_tarball = (
|
||||
'http://09cce49df173f6f6e61f-fd6930021b51685920a6fa76529ee321'
|
||||
'.r45.cf2.rackcdn.com/PyML-0.7.9.tar.gz')
|
||||
pyml_srcidr = 'PyML-0.7.9'
|
||||
|
||||
# see if PyML tarball needs to be fetched:
|
||||
if not dir_exists(pyml_srcidr):
|
||||
run("curl %s | tar -xz" % pyml_tarball)
|
||||
|
||||
# compile&install:
|
||||
with cd(pyml_srcidr):
|
||||
python('setup.py build')
|
||||
python('setup.py install')
|
||||
|
||||
|
||||
def run(command):
|
||||
if os.system(command) != 0:
|
||||
raise Exception("Failed '{}'".format(command))
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
def python(command):
|
||||
command = '{} {}'.format(sys.executable, command)
|
||||
run(command)
|
||||
|
||||
|
||||
def enforce_executable(name, install_info):
|
||||
if os.system("which {}".format(name)) != 0:
|
||||
raise Exception(
|
||||
'{} utility is missing.\nTo install, run:\n\n{}\n'.format(
|
||||
name, install_info))
|
||||
|
||||
|
||||
def pip(command):
|
||||
command = '{} {}'.format(find_executable('pip'), command)
|
||||
run(command)
|
||||
|
||||
|
||||
def dir_exists(path):
|
||||
return os.path.isdir(path)
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def cd(directory):
|
||||
curdir = os.getcwd()
|
||||
try:
|
||||
os.chdir(directory)
|
||||
yield {}
|
||||
finally:
|
||||
os.chdir(curdir)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if len(sys.argv) > 1 and sys.argv[1] in ['develop', 'install']:
|
||||
enforce_executable('curl', 'sudo aptitude install curl')
|
||||
|
||||
install_pyml()
|
||||
|
||||
@@ -12,8 +12,7 @@ from copy import deepcopy
|
||||
from lxml import html, etree
|
||||
import html2text
|
||||
|
||||
from talon.constants import RE_DELIMITER
|
||||
from talon.utils import random_token, get_delimiter
|
||||
from talon.utils import get_delimiter
|
||||
from talon import html_quotations
|
||||
|
||||
|
||||
@@ -151,7 +150,7 @@ def extract_from(msg_body, content_type='text/plain'):
|
||||
return extract_from_plain(msg_body)
|
||||
elif content_type == 'text/html':
|
||||
return extract_from_html(msg_body)
|
||||
except Exception, e:
|
||||
except Exception:
|
||||
log.exception('ERROR extracting message')
|
||||
|
||||
return msg_body
|
||||
@@ -344,7 +343,7 @@ def extract_from_html(msg_body):
|
||||
html_tree_copy = deepcopy(html_tree)
|
||||
|
||||
number_of_checkpoints = html_quotations.add_checkpoint(html_tree, 0)
|
||||
quotation_checkpoints = [False for i in xrange(number_of_checkpoints)]
|
||||
quotation_checkpoints = [False] * number_of_checkpoints
|
||||
msg_with_checkpoints = html.tostring(html_tree)
|
||||
|
||||
h = html2text.HTML2Text()
|
||||
|
||||
@@ -21,11 +21,9 @@ trained against, don't forget to regenerate:
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
from cStringIO import StringIO
|
||||
|
||||
from . import extraction
|
||||
from . extraction import extract
|
||||
from . extraction import extract #noqa
|
||||
from . learning import classifier
|
||||
|
||||
|
||||
@@ -36,13 +34,5 @@ EXTRACTOR_DATA = os.path.join(DATA_DIR, 'train.data')
|
||||
|
||||
|
||||
def initialize():
|
||||
try:
|
||||
# redirect output
|
||||
so, sys.stdout = sys.stdout, StringIO()
|
||||
|
||||
extraction.EXTRACTOR = classifier.load(EXTRACTOR_FILENAME,
|
||||
EXTRACTOR_DATA)
|
||||
sys.stdout = so
|
||||
except Exception, e:
|
||||
raise Exception(
|
||||
"Failed initializing signature parsing with classifiers", e)
|
||||
extraction.EXTRACTOR = classifier.load(EXTRACTOR_FILENAME,
|
||||
EXTRACTOR_DATA)
|
||||
|
||||
Binary file not shown.
BIN
talon/signature/data/classifier_01.npy
Normal file
BIN
talon/signature/data/classifier_01.npy
Normal file
Binary file not shown.
BIN
talon/signature/data/classifier_02.npy
Normal file
BIN
talon/signature/data/classifier_02.npy
Normal file
Binary file not shown.
BIN
talon/signature/data/classifier_03.npy
Normal file
BIN
talon/signature/data/classifier_03.npy
Normal file
Binary file not shown.
BIN
talon/signature/data/classifier_04.npy
Normal file
BIN
talon/signature/data/classifier_04.npy
Normal file
Binary file not shown.
BIN
talon/signature/data/classifier_05.npy
Normal file
BIN
talon/signature/data/classifier_05.npy
Normal file
Binary file not shown.
@@ -1,14 +1,10 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import os
|
||||
import logging
|
||||
|
||||
import regex as re
|
||||
from PyML import SparseDataSet
|
||||
import numpy
|
||||
|
||||
from talon.constants import RE_DELIMITER
|
||||
from talon.signature.constants import (SIGNATURE_MAX_LINES,
|
||||
TOO_LONG_SIGNATURE_LINE)
|
||||
from talon.signature.learning.featurespace import features, build_pattern
|
||||
from talon.utils import get_delimiter
|
||||
from talon.signature.bruteforce import get_signature_candidate
|
||||
@@ -36,8 +32,8 @@ RE_REVERSE_SIGNATURE = re.compile(r'''
|
||||
|
||||
def is_signature_line(line, sender, classifier):
|
||||
'''Checks if the line belongs to signature. Returns True or False.'''
|
||||
data = SparseDataSet([build_pattern(line, features(sender))])
|
||||
return classifier.decisionFunc(data, 0) > 0
|
||||
data = numpy.array(build_pattern(line, features(sender)))
|
||||
return classifier.predict(data) > 0
|
||||
|
||||
|
||||
def extract(body, sender):
|
||||
@@ -61,7 +57,7 @@ def extract(body, sender):
|
||||
text = delimiter.join(text)
|
||||
if text.strip():
|
||||
return (text, delimiter.join(signature))
|
||||
except Exception, e:
|
||||
except Exception:
|
||||
log.exception('ERROR when extracting signature with classifiers')
|
||||
|
||||
return (body, None)
|
||||
|
||||
@@ -5,32 +5,27 @@ The classifier could be used to detect if a certain line of the message
|
||||
body belongs to the signature.
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
from PyML import SparseDataSet, SVM
|
||||
from numpy import genfromtxt
|
||||
from sklearn.svm import LinearSVC
|
||||
from sklearn.externals import joblib
|
||||
|
||||
|
||||
def init():
|
||||
'''Inits classifier with optimal options.'''
|
||||
return SVM(C=10, optimization='liblinear')
|
||||
"""Inits classifier with optimal options."""
|
||||
return LinearSVC(C=10.0)
|
||||
|
||||
|
||||
def train(classifier, train_data_filename, save_classifier_filename=None):
|
||||
'''Trains and saves classifier so that it could be easily loaded later.'''
|
||||
data = SparseDataSet(train_data_filename, labelsColumn=-1)
|
||||
classifier.train(data)
|
||||
"""Trains and saves classifier so that it could be easily loaded later."""
|
||||
file_data = genfromtxt(train_data_filename, delimiter=",")
|
||||
train_data, labels = file_data[:, :-1], file_data[:, -1]
|
||||
classifier.fit(train_data, labels)
|
||||
|
||||
if save_classifier_filename:
|
||||
classifier.save(save_classifier_filename)
|
||||
joblib.dump(classifier, save_classifier_filename)
|
||||
return classifier
|
||||
|
||||
|
||||
def load(saved_classifier_filename, train_data_filename):
|
||||
"""Loads saved classifier.
|
||||
|
||||
Classifier should be loaded with the same data it was trained against
|
||||
"""
|
||||
train_data = SparseDataSet(train_data_filename, labelsColumn=-1)
|
||||
classifier = init()
|
||||
classifier.load(saved_classifier_filename, train_data)
|
||||
return classifier
|
||||
"""Loads saved classifier. """
|
||||
return joblib.load(saved_classifier_filename)
|
||||
|
||||
@@ -17,7 +17,7 @@ from talon.signature.constants import SIGNATURE_MAX_LINES
|
||||
rc = re.compile
|
||||
|
||||
RE_EMAIL = rc('@')
|
||||
RE_RELAX_PHONE = rc('.*(\(? ?[\d]{2,3} ?\)?.{,3}){2,}')
|
||||
RE_RELAX_PHONE = rc('(\(? ?[\d]{2,3} ?\)?.{,3}?){2,}')
|
||||
RE_URL = rc(r'''https?://|www\.[\S]+\.[\S]''')
|
||||
|
||||
# Taken from:
|
||||
@@ -40,14 +40,6 @@ RE_SIGNATURE_WORDS = rc(('(T|t)hank.*,|(B|b)est|(R|r)egards|'
|
||||
# Line contains a pattern like Vitor R. Carvalho or William W. Cohen.
|
||||
RE_NAME = rc('[A-Z][a-z]+\s\s?[A-Z][\.]?\s\s?[A-Z][a-z]+')
|
||||
|
||||
# Pattern to match if e.g. 'Sender:' header field has sender names.
|
||||
SENDER_WITH_NAME_PATTERN = '([\s]*[\S]+,?)+[\s]*<.*>.*'
|
||||
RE_SENDER_WITH_NAME = rc(SENDER_WITH_NAME_PATTERN)
|
||||
|
||||
# Reply line clue line endings, as in regular expression:
|
||||
# " wrote:$" or " writes:$"
|
||||
RE_CLUE_LINE_END = rc('.*(W|w)rotes?:$')
|
||||
|
||||
INVALID_WORD_START = rc('\(|\+|[\d]')
|
||||
|
||||
BAD_SENDER_NAMES = [
|
||||
|
||||
4
tests/fixtures/standard_replies/iphone.eml
vendored
4
tests/fixtures/standard_replies/iphone.eml
vendored
@@ -9,11 +9,11 @@ To: bob <bob@example.com>
|
||||
Content-Transfer-Encoding: quoted-printable
|
||||
Mime-Version: 1.0 (1.0)
|
||||
|
||||
hello
|
||||
Hello
|
||||
|
||||
Sent from my iPhone
|
||||
|
||||
On Apr 3, 2012, at 4:19 PM, bob <bob@example.com> wr=
|
||||
ote:
|
||||
|
||||
> Hi
|
||||
> Hi
|
||||
|
||||
3
tests/fixtures/standard_replies/iphone_reply_text
vendored
Normal file
3
tests/fixtures/standard_replies/iphone_reply_text
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
Hello
|
||||
|
||||
Sent from my iPhone
|
||||
@@ -4,7 +4,6 @@ from . import *
|
||||
from . fixtures import *
|
||||
|
||||
import regex as re
|
||||
from flanker import mime
|
||||
|
||||
from talon import quotations
|
||||
|
||||
@@ -224,10 +223,7 @@ def test_reply_shares_div_with_from_block():
|
||||
|
||||
|
||||
def test_reply_quotations_share_block():
|
||||
msg = mime.from_string(REPLY_QUOTATIONS_SHARE_BLOCK)
|
||||
html_part = list(msg.walk())[1]
|
||||
assert html_part.content_type == 'text/html'
|
||||
stripped_html = quotations.extract_from_html(html_part.body)
|
||||
stripped_html = quotations.extract_from_plain(REPLY_QUOTATIONS_SHARE_BLOCK)
|
||||
ok_(stripped_html)
|
||||
ok_('From' not in stripped_html)
|
||||
|
||||
|
||||
@@ -3,8 +3,6 @@
|
||||
from . import *
|
||||
from . fixtures import *
|
||||
|
||||
from flanker import mime
|
||||
|
||||
from talon import quotations
|
||||
|
||||
|
||||
|
||||
@@ -2,10 +2,6 @@
|
||||
|
||||
from .. import *
|
||||
|
||||
import os
|
||||
|
||||
from flanker import mime
|
||||
|
||||
from talon.signature import bruteforce
|
||||
|
||||
|
||||
|
||||
@@ -4,8 +4,6 @@ from .. import *
|
||||
|
||||
import os
|
||||
|
||||
from PyML import SparseDataSet
|
||||
|
||||
from talon.signature.learning import dataset
|
||||
from talon import signature
|
||||
from talon.signature import extraction as e
|
||||
|
||||
@@ -3,9 +3,8 @@
|
||||
from ... import *
|
||||
import os
|
||||
|
||||
from PyML import SparseDataSet
|
||||
from numpy import genfromtxt
|
||||
|
||||
from talon.utils import to_unicode
|
||||
from talon.signature.learning import dataset as d
|
||||
|
||||
from talon.signature.learning.featurespace import features
|
||||
@@ -42,10 +41,13 @@ def test_build_extraction_dataset():
|
||||
d.build_extraction_dataset(os.path.join(EMAILS_DIR, 'P'),
|
||||
os.path.join(TMP_DIR,
|
||||
'extraction.data'), 1)
|
||||
test_data = SparseDataSet(os.path.join(TMP_DIR, 'extraction.data'),
|
||||
labelsColumn=-1)
|
||||
|
||||
filename = os.path.join(TMP_DIR, 'extraction.data')
|
||||
file_data = genfromtxt(filename, delimiter=",")
|
||||
test_data = file_data[:, :-1]
|
||||
|
||||
# the result is a loadable signature extraction dataset
|
||||
# 32 comes from 3 emails in emails/P folder, 11 lines checked to be
|
||||
# a signature, one email has only 10 lines
|
||||
eq_(test_data.size(), 32)
|
||||
eq_(len(features('')), test_data.numFeatures)
|
||||
eq_(test_data.shape[0], 32)
|
||||
eq_(len(features('')), test_data.shape[1])
|
||||
|
||||
@@ -43,7 +43,7 @@ VALID_PHONE_NUMBERS = [e.strip() for e in VALID.splitlines() if e.strip()]
|
||||
|
||||
def test_match_phone_numbers():
|
||||
for phone in VALID_PHONE_NUMBERS:
|
||||
ok_(RE_RELAX_PHONE.match(phone), "{} should be matched".format(phone))
|
||||
ok_(RE_RELAX_PHONE.search(phone), "{} should be matched".format(phone))
|
||||
|
||||
|
||||
def test_match_names():
|
||||
@@ -52,29 +52,6 @@ def test_match_names():
|
||||
ok_(RE_NAME.match(name), "{} should be matched".format(name))
|
||||
|
||||
|
||||
def test_sender_with_name():
|
||||
ok_lines = ['Sergey Obukhov <serobnic@example.com>',
|
||||
'\tSergey <serobnic@example.com>',
|
||||
('"Doe, John (TX)"'
|
||||
'<DowJ@example.com>@EXAMPLE'
|
||||
'<IMCEANOTES-+22Doe+2C+20John+20'
|
||||
'+28TX+29+22+20+3CDoeJ+40example+2Ecom+3E'
|
||||
'+40EXAMPLE@EXAMPLE.com>'),
|
||||
('Company Sleuth <csleuth@email.xxx.com>'
|
||||
'@EXAMPLE <XXX-Company+20Sleuth+20+3Ccsleuth'
|
||||
'+40email+2Exxx+2Ecom+3E+40EXAMPLE@EXAMPLE.com>'),
|
||||
('Doe III, John '
|
||||
'</O=EXAMPLE/OU=NA/CN=RECIPIENTS/CN=jDOE5>')]
|
||||
for line in ok_lines:
|
||||
ok_(RE_SENDER_WITH_NAME.match(line),
|
||||
'{} should be matched'.format(line))
|
||||
|
||||
nok_lines = ['', '<serobnic@xxx.ru>', 'Sergey serobnic@xxx.ru']
|
||||
for line in nok_lines:
|
||||
assert_false(RE_SENDER_WITH_NAME.match(line),
|
||||
'{} should not be matched'.format(line))
|
||||
|
||||
|
||||
# Now test helpers functions
|
||||
def test_binary_regex_search():
|
||||
eq_(1, h.binary_regex_search(re.compile("12"))("12"))
|
||||
|
||||
@@ -5,8 +5,7 @@ from . fixtures import *
|
||||
|
||||
import os
|
||||
|
||||
from flanker import mime
|
||||
|
||||
import email.iterators
|
||||
from talon import quotations
|
||||
|
||||
|
||||
@@ -614,22 +613,21 @@ def test_preprocess_postprocess_2_links():
|
||||
def test_standard_replies():
|
||||
for filename in os.listdir(STANDARD_REPLIES):
|
||||
filename = os.path.join(STANDARD_REPLIES, filename)
|
||||
if os.path.isdir(filename):
|
||||
if not filename.endswith('.eml') or os.path.isdir(filename):
|
||||
continue
|
||||
with open(filename) as f:
|
||||
msg = f.read()
|
||||
m = mime.from_string(msg)
|
||||
for part in m.walk():
|
||||
if part.content_type == 'text/plain':
|
||||
text = part.body
|
||||
stripped_text = quotations.extract_from_plain(text)
|
||||
reply_text_fn = filename[:-4] + '_reply_text'
|
||||
if os.path.isfile(reply_text_fn):
|
||||
with open(reply_text_fn) as f:
|
||||
reply_text = f.read()
|
||||
else:
|
||||
reply_text = 'Hello'
|
||||
eq_(reply_text, stripped_text,
|
||||
"'%(reply)s' != %(stripped)s for %(fn)s" %
|
||||
{'reply': reply_text, 'stripped': stripped_text,
|
||||
'fn': filename})
|
||||
message = email.message_from_file(f)
|
||||
body = email.iterators.typed_subpart_iterator(message, subtype='plain').next()
|
||||
text = ''.join(email.iterators.body_line_iterator(body, True))
|
||||
|
||||
stripped_text = quotations.extract_from_plain(text)
|
||||
reply_text_fn = filename[:-4] + '_reply_text'
|
||||
if os.path.isfile(reply_text_fn):
|
||||
with open(reply_text_fn) as f:
|
||||
reply_text = f.read().strip()
|
||||
else:
|
||||
reply_text = 'Hello'
|
||||
yield eq_, reply_text, stripped_text, \
|
||||
"'%(reply)s' != %(stripped)s for %(fn)s" % \
|
||||
{'reply': reply_text, 'stripped': stripped_text,
|
||||
'fn': filename}
|
||||
|
||||
10
train.py
Normal file
10
train.py
Normal file
@@ -0,0 +1,10 @@
|
||||
from talon.signature import EXTRACTOR_FILENAME, EXTRACTOR_DATA
|
||||
from talon.signature.learning.classifier import train, init
|
||||
|
||||
|
||||
def train_model():
|
||||
""" retrain model and persist """
|
||||
train(init(), EXTRACTOR_DATA, EXTRACTOR_FILENAME)
|
||||
|
||||
if __name__ == "__main__":
|
||||
train_model()
|
||||
Reference in New Issue
Block a user