Remove flanker and replace PyML with scikit-learn

I never was actually able to successfully install PyML but the source-forge
distribution and lack of python3 support convinced me that scikit-learn would
be a fine substitute. Flanker was also difficult for me to install and seemed
only to be used in the tests, so I removed it as well to get into a position
where I could run the tests. As of this commit, only one is not passing
(test_standard_replies with android.eml) though I'm not familiar with the `email`
library yet.
This commit is contained in:
Alex Riina
2015-03-08 00:06:01 -05:00
committed by Alex Riina
parent b36287e573
commit f16760c466
12 changed files with 44 additions and 133 deletions

View File

@@ -1,8 +1,3 @@
import os
import sys
import contextlib
from distutils.spawn import find_executable
from setuptools import setup, find_packages
@@ -20,87 +15,11 @@ setup(name='talon',
zip_safe=True,
install_requires=[
"lxml==2.3.3",
"regex==0.1.20110315",
"chardet==1.0.1",
"dnspython==1.11.1",
"regex==0.1.20110315", # handling of .* changes from version 0 to 1
"html2text",
"nose==1.2.1",
"mock",
"coverage",
"flanker"
"scikit-learn",
]
)
def install_pyml():
'''
Downloads and installs PyML
'''
try:
import PyML
except:
pass
else:
return
# install numpy first
pip('install numpy==1.6.1 --upgrade')
pyml_tarball = (
'http://09cce49df173f6f6e61f-fd6930021b51685920a6fa76529ee321'
'.r45.cf2.rackcdn.com/PyML-0.7.9.tar.gz')
pyml_srcidr = 'PyML-0.7.9'
# see if PyML tarball needs to be fetched:
if not dir_exists(pyml_srcidr):
run("curl %s | tar -xz" % pyml_tarball)
# compile&install:
with cd(pyml_srcidr):
python('setup.py build')
python('setup.py install')
def run(command):
if os.system(command) != 0:
raise Exception("Failed '{}'".format(command))
else:
return 0
def python(command):
command = '{} {}'.format(sys.executable, command)
run(command)
def enforce_executable(name, install_info):
if os.system("which {}".format(name)) != 0:
raise Exception(
'{} utility is missing.\nTo install, run:\n\n{}\n'.format(
name, install_info))
def pip(command):
command = '{} {}'.format(find_executable('pip'), command)
run(command)
def dir_exists(path):
return os.path.isdir(path)
@contextlib.contextmanager
def cd(directory):
curdir = os.getcwd()
try:
os.chdir(directory)
yield {}
finally:
os.chdir(curdir)
if __name__ == '__main__':
if len(sys.argv) > 1 and sys.argv[1] in ['develop', 'install']:
enforce_executable('curl', 'sudo aptitude install curl')
install_pyml()

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -3,7 +3,7 @@
import logging
import regex as re
from PyML import SparseDataSet
import numpy
from talon.signature.learning.featurespace import features, build_pattern
from talon.utils import get_delimiter
@@ -32,8 +32,8 @@ RE_REVERSE_SIGNATURE = re.compile(r'''
def is_signature_line(line, sender, classifier):
'''Checks if the line belongs to signature. Returns True or False.'''
data = SparseDataSet([build_pattern(line, features(sender))])
return classifier.decisionFunc(data, 0) > 0
data = numpy.array(build_pattern(line, features(sender)))
return classifier.predict(data) > 0
def extract(body, sender):

View File

@@ -5,32 +5,27 @@ The classifier could be used to detect if a certain line of the message
body belongs to the signature.
"""
import os
import sys
from PyML import SparseDataSet, SVM
from numpy import genfromtxt
from sklearn.svm import LinearSVC
from sklearn.externals import joblib
def init():
'''Inits classifier with optimal options.'''
return SVM(C=10, optimization='liblinear')
"""Inits classifier with optimal options."""
return LinearSVC(C=10.0)
def train(classifier, train_data_filename, save_classifier_filename=None):
'''Trains and saves classifier so that it could be easily loaded later.'''
data = SparseDataSet(train_data_filename, labelsColumn=-1)
classifier.train(data)
"""Trains and saves classifier so that it could be easily loaded later."""
file_data = genfromtxt(train_data_filename, delimiter=",")
train_data, labels = file_data[:, :-1], file_data[:, -1]
classifier.fit(train_data, labels)
if save_classifier_filename:
classifier.save(save_classifier_filename)
joblib.dump(classifier, save_classifier_filename)
return classifier
def load(saved_classifier_filename, train_data_filename):
"""Loads saved classifier.
Classifier should be loaded with the same data it was trained against
"""
train_data = SparseDataSet(train_data_filename, labelsColumn=-1)
classifier = init()
classifier.load(saved_classifier_filename, train_data)
return classifier
"""Loads saved classifier. """
return joblib.load(saved_classifier_filename)

View File

@@ -4,7 +4,6 @@ from . import *
from . fixtures import *
import regex as re
from flanker import mime
from talon import quotations
@@ -224,10 +223,7 @@ def test_reply_shares_div_with_from_block():
def test_reply_quotations_share_block():
msg = mime.from_string(REPLY_QUOTATIONS_SHARE_BLOCK)
html_part = list(msg.walk())[1]
assert html_part.content_type == 'text/html'
stripped_html = quotations.extract_from_html(html_part.body)
stripped_html = quotations.extract_from_plain(REPLY_QUOTATIONS_SHARE_BLOCK)
ok_(stripped_html)
ok_('From' not in stripped_html)

View File

@@ -3,7 +3,7 @@
from ... import *
import os
from PyML import SparseDataSet
from numpy import genfromtxt
from talon.signature.learning import dataset as d
@@ -41,10 +41,13 @@ def test_build_extraction_dataset():
d.build_extraction_dataset(os.path.join(EMAILS_DIR, 'P'),
os.path.join(TMP_DIR,
'extraction.data'), 1)
test_data = SparseDataSet(os.path.join(TMP_DIR, 'extraction.data'),
labelsColumn=-1)
filename = os.path.join(TMP_DIR, 'extraction.data')
file_data = genfromtxt(filename, delimiter=",")
test_data = file_data[:, :-1]
# the result is a loadable signature extraction dataset
# 32 comes from 3 emails in emails/P folder, 11 lines checked to be
# a signature, one email has only 10 lines
eq_(test_data.size(), 32)
eq_(len(features('')), test_data.numFeatures)
eq_(test_data.shape[0], 32)
eq_(len(features('')), test_data.shape[1])

View File

@@ -5,8 +5,7 @@ from . fixtures import *
import os
from flanker import mime
import email.iterators
from talon import quotations
@@ -614,22 +613,21 @@ def test_preprocess_postprocess_2_links():
def test_standard_replies():
for filename in os.listdir(STANDARD_REPLIES):
filename = os.path.join(STANDARD_REPLIES, filename)
if os.path.isdir(filename):
if not filename.endswith('.eml') or os.path.isdir(filename):
continue
with open(filename) as f:
msg = f.read()
m = mime.from_string(msg)
for part in m.walk():
if part.content_type == 'text/plain':
text = part.body
stripped_text = quotations.extract_from_plain(text)
reply_text_fn = filename[:-4] + '_reply_text'
if os.path.isfile(reply_text_fn):
with open(reply_text_fn) as f:
reply_text = f.read()
else:
reply_text = 'Hello'
eq_(reply_text, stripped_text,
"'%(reply)s' != %(stripped)s for %(fn)s" %
{'reply': reply_text, 'stripped': stripped_text,
'fn': filename})
message = email.message_from_file(f)
body = email.iterators.typed_subpart_iterator(message, subtype='plain').next()
text = ''.join(email.iterators.body_line_iterator(body))
stripped_text = quotations.extract_from_plain(text)
reply_text_fn = filename[:-4] + '_reply_text'
if os.path.isfile(reply_text_fn):
with open(reply_text_fn) as f:
reply_text = f.read()
else:
reply_text = 'Hello'
yield eq_, reply_text, stripped_text, \
"'%(reply)s' != %(stripped)s for %(fn)s" % \
{'reply': reply_text, 'stripped': stripped_text,
'fn': filename}