5 Commits

Author SHA1 Message Date
Maxim Vladimirskiy
24d0f2d00a Merge pull request #223 from mailgun/maxim/develop
PIP-1509: Optimise sender name check [python3]
2021-11-19 13:11:29 +03:00
Maxim Vladimirskiy
94007b0b92 Optimise sender name check 2021-11-19 11:12:26 +03:00
Maxim Vladimirskiy
1a5548f171 Merge pull request #222 from mailgun/maxim/develop
PIP-1409: Remove version pins from setup.py [python3]
2021-11-11 16:29:30 +03:00
Maxim Vladimirskiy
53c49b9121 Remove version pins from setup.py 2021-11-11 15:36:50 +03:00
Matt Dietz
bd50872043 Merge pull request #217 from mailgun/dietz/REP-1030
Drops Python 2 support [python3]
2021-06-15 09:46:29 -05:00
5 changed files with 40 additions and 31 deletions

View File

@@ -6,6 +6,6 @@ joblib
lxml>=2.3.3
numpy
regex>=1
scikit-learn==0.24.1 # pickled versions of classifier, else rebuild
scikit-learn>=1.0.0
scipy
six>=1.10.0

View File

@@ -29,7 +29,7 @@ class InstallCommand(install):
setup(name='talon',
version='1.4.8',
version='1.4.10',
description=("Mailgun library "
"to extract message quotations and signatures."),
long_description=open("README.rst").read(),
@@ -44,21 +44,21 @@ setup(name='talon',
include_package_data=True,
zip_safe=True,
install_requires=[
"lxml>=2.3.3",
"regex>=1",
"lxml",
"regex",
"numpy",
"scipy",
"scikit-learn==0.24.1", # pickled versions of classifier, else rebuild
"chardet>=1.0.1",
"cchardet>=0.3.5",
"scikit-learn>=1.0.0",
"chardet",
"cchardet",
"cssselect",
"six>=1.10.0",
"six",
"html5lib",
"joblib",
],
tests_require=[
"mock",
"nose>=1.2.1",
"nose",
"coverage"
]
)

View File

@@ -23,17 +23,14 @@ trained against, don't forget to regenerate:
from __future__ import absolute_import
import os
from . import extraction
from . extraction import extract #noqa
from . learning import classifier
DATA_DIR = os.path.join(os.path.dirname(__file__), 'data')
EXTRACTOR_FILENAME = os.path.join(DATA_DIR, 'classifier')
EXTRACTOR_DATA = os.path.join(DATA_DIR, 'train.data')
from talon.signature import extraction
from talon.signature.extraction import extract
from talon.signature.learning import classifier
def initialize():
extraction.EXTRACTOR = classifier.load(EXTRACTOR_FILENAME,
EXTRACTOR_DATA)
data_dir = os.path.join(os.path.dirname(__file__), 'data')
extractor_filename = os.path.join(data_dir, 'classifier')
extractor_data_filename = os.path.join(data_dir, 'train.data')
extraction.EXTRACTOR = classifier.load(extractor_filename,
extractor_data_filename)

Binary file not shown.

View File

@@ -102,7 +102,7 @@ def flatten_list(list_to_flatten):
def contains_sender_names(sender):
'''Returns a functions to search sender\'s name or it\'s part.
"""Returns a functions to search sender\'s name or it\'s part.
>>> feature = contains_sender_names("Sergey N. Obukhov <xxx@example.com>")
>>> feature("Sergey Obukhov")
@@ -115,7 +115,7 @@ def contains_sender_names(sender):
1
>>> contains_sender_names("<serobnic@mail.ru>")("serobnic")
1
'''
"""
names = '( |$)|'.join(flatten_list([[e, e.capitalize()]
for e in extract_names(sender)]))
names = names or sender
@@ -140,10 +140,16 @@ def extract_names(sender):
sender = "".join([char if char.isalpha() else ' ' for char in sender])
# Remove too short words and words from "black" list i.e.
# words like `ru`, `gmail`, `com`, `org`, etc.
sender = [word for word in sender.split() if len(word) > 1 and
not word in BAD_SENDER_NAMES]
# Remove duplicates
names = list(set(sender))
names = list()
for word in sender.split():
if len(word) < 2:
continue
if word in BAD_SENDER_NAMES:
continue
if word in names:
continue
names.append(word)
return names
@@ -208,20 +214,26 @@ def many_capitalized_words(s):
def has_signature(body, sender):
'''Checks if the body has signature. Returns True or False.'''
"""Checks if the body has signature. Returns True or False."""
non_empty = [line for line in body.splitlines() if line.strip()]
candidate = non_empty[-SIGNATURE_MAX_LINES:]
upvotes = 0
sender_check = contains_sender_names(sender)
for line in candidate:
# we check lines for sender's name, phone, email and url,
# those signature lines don't take more then 27 lines
if len(line.strip()) > 27:
continue
elif contains_sender_names(sender)(line):
if sender_check(line):
return True
elif (binary_regex_search(RE_RELAX_PHONE)(line) +
binary_regex_search(RE_EMAIL)(line) +
binary_regex_search(RE_URL)(line) == 1):
if (binary_regex_search(RE_RELAX_PHONE)(line) +
binary_regex_search(RE_EMAIL)(line) +
binary_regex_search(RE_URL)(line) == 1):
upvotes += 1
if upvotes > 1:
return True
return False