Compare commits
8 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b299feab1e | ||
|
|
95182dcfc4 | ||
|
|
f9fe412fa4 | ||
|
|
00a8db2e3e | ||
|
|
71ae26ccd1 | ||
|
|
b0851d5363 | ||
|
|
ac4f5201bb | ||
|
|
81e88d9222 |
9
MANIFEST.in
Normal file
9
MANIFEST.in
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
recursive-include tests *
|
||||||
|
recursive-include talon *
|
||||||
|
recursive-exclude tests *.pyc *~
|
||||||
|
recursive-exclude talon *.pyc *~
|
||||||
|
include train.data
|
||||||
|
include classifier
|
||||||
|
include LICENSE
|
||||||
|
include MANIFEST.in
|
||||||
|
include README.rst
|
||||||
97
README.md
97
README.md
@@ -1,97 +0,0 @@
|
|||||||
talon
|
|
||||||
=====
|
|
||||||
|
|
||||||
Mailgun library to extract message quotations and signatures.
|
|
||||||
|
|
||||||
If you ever tried to parse message quotations or signatures you know that absense of any formatting standards in this area
|
|
||||||
could make this task a nightmare. Hopefully this library will make your life much eathier. The name of the project is
|
|
||||||
inspired by TALON - multipurpose robot designed to perform missions ranging from reconnaissance to combat and operate in
|
|
||||||
a number of hostile environments. That's what a good quotations and signature parser should be like :smile:
|
|
||||||
|
|
||||||
Usage
|
|
||||||
-----
|
|
||||||
|
|
||||||
Here's how you initialize the library and extract a reply from a text message:
|
|
||||||
|
|
||||||
```python
|
|
||||||
import talon
|
|
||||||
from talon import quotations
|
|
||||||
|
|
||||||
talon.init()
|
|
||||||
|
|
||||||
text = """Reply
|
|
||||||
|
|
||||||
-----Original Message-----
|
|
||||||
|
|
||||||
Quote"""
|
|
||||||
|
|
||||||
reply = quotations.extract_from(text, 'text/plain')
|
|
||||||
reply = quotations.extract_from_plain(text)
|
|
||||||
# reply == "Reply"
|
|
||||||
```
|
|
||||||
|
|
||||||
To extract a reply from html:
|
|
||||||
|
|
||||||
```python
|
|
||||||
html = """Reply
|
|
||||||
<blockquote>
|
|
||||||
|
|
||||||
<div>
|
|
||||||
On 11-Apr-2011, at 6:54 PM, Bob <bob@example.com> wrote:
|
|
||||||
</div>
|
|
||||||
|
|
||||||
<div>
|
|
||||||
Quote
|
|
||||||
</div>
|
|
||||||
|
|
||||||
</blockquote>"""
|
|
||||||
|
|
||||||
reply = quotations.extract_from(html, 'text/html')
|
|
||||||
reply = quotations.extract_from_html(html)
|
|
||||||
# reply == "<html><body><p>Reply</p></body></html>"
|
|
||||||
```
|
|
||||||
|
|
||||||
Often the best way is the easiest one. Here's how you can extract signature from email message without any
|
|
||||||
machine learning fancy stuff:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from talon.signature.bruteforce import extract_signature
|
|
||||||
|
|
||||||
|
|
||||||
message = """Wow. Awesome!
|
|
||||||
--
|
|
||||||
Bob Smith"""
|
|
||||||
|
|
||||||
text, signature = extract_signature(message)
|
|
||||||
# text == "Wow. Awesome!"
|
|
||||||
# signature == "--\nBob Smith"
|
|
||||||
```
|
|
||||||
|
|
||||||
Quick and works like a charm 90% of the time. For other 10% you can use the power of machine learning algorithms:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from talon import signature
|
|
||||||
|
|
||||||
|
|
||||||
message = """Thanks Sasha, I can't go any higher and is why I limited it to the
|
|
||||||
homepage.
|
|
||||||
|
|
||||||
John Doe
|
|
||||||
via mobile"""
|
|
||||||
|
|
||||||
text, signature = signature.extract(message, sender='john.doe@example.com')
|
|
||||||
# text == "Thanks Sasha, I can't go any higher and is why I limited it to the\nhomepage."
|
|
||||||
# signature == "John Doe\nvia mobile"
|
|
||||||
```
|
|
||||||
|
|
||||||
For machine learning talon currently uses [PyML](http://pyml.sourceforge.net/) library to build SVM classifiers. The core of machine learning algorithm lays in ``talon.signature.learning package``. It defines a set of features to apply to a message (``featurespace.py``), how data sets are built (``dataset.py``), classifier's interface (``classifier.py``).
|
|
||||||
|
|
||||||
The data used for training is taken from our personal email conversations and from [ENRON](https://www.cs.cmu.edu/~enron/) dataset. As a result of applying our set of features to the dataset we provide files ``classifier`` and ``train.data`` that don't have any personal information but could be used to load trained classifier. Those files should be regenerated every time the feature/data set is changed.
|
|
||||||
|
|
||||||
Research
|
|
||||||
--------
|
|
||||||
|
|
||||||
The library is inspired by the following research papers and projects:
|
|
||||||
|
|
||||||
* http://www.cs.cmu.edu/~vitor/papers/sigFilePaper_finalversion.pdf
|
|
||||||
* http://www.cs.cornell.edu/people/tj/publications/joachims_01a.pdf
|
|
||||||
109
README.rst
Normal file
109
README.rst
Normal file
@@ -0,0 +1,109 @@
|
|||||||
|
talon
|
||||||
|
=====
|
||||||
|
|
||||||
|
Mailgun library to extract message quotations and signatures.
|
||||||
|
|
||||||
|
If you ever tried to parse message quotations or signatures you know that absense of any formatting standards in this area could make this task a nightmare. Hopefully this library will make your life much easier. The name of the project is inspired by TALON - multipurpose robot designed to perform missions ranging from reconnaissance to combat and operate in a number of hostile environments. That’s what a good quotations and signature parser should be like :smile:
|
||||||
|
|
||||||
|
Usage
|
||||||
|
-----
|
||||||
|
|
||||||
|
Here’s how you initialize the library and extract a reply from a text
|
||||||
|
message:
|
||||||
|
|
||||||
|
.. code:: python
|
||||||
|
|
||||||
|
import talon
|
||||||
|
from talon import quotations
|
||||||
|
|
||||||
|
talon.init()
|
||||||
|
|
||||||
|
text = """Reply
|
||||||
|
|
||||||
|
-----Original Message-----
|
||||||
|
|
||||||
|
Quote"""
|
||||||
|
|
||||||
|
reply = quotations.extract_from(text, 'text/plain')
|
||||||
|
reply = quotations.extract_from_plain(text)
|
||||||
|
# reply == "Reply"
|
||||||
|
|
||||||
|
To extract a reply from html:
|
||||||
|
|
||||||
|
.. code:: python
|
||||||
|
|
||||||
|
html = """Reply
|
||||||
|
<blockquote>
|
||||||
|
|
||||||
|
<div>
|
||||||
|
On 11-Apr-2011, at 6:54 PM, Bob <bob@example.com> wrote:
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div>
|
||||||
|
Quote
|
||||||
|
</div>
|
||||||
|
|
||||||
|
</blockquote>"""
|
||||||
|
|
||||||
|
reply = quotations.extract_from(html, 'text/html')
|
||||||
|
reply = quotations.extract_from_html(html)
|
||||||
|
# reply == "<html><body><p>Reply</p></body></html>"
|
||||||
|
|
||||||
|
Often the best way is the easiest one. Here’s how you can extract
|
||||||
|
signature from email message without any
|
||||||
|
machine learning fancy stuff:
|
||||||
|
|
||||||
|
.. code:: python
|
||||||
|
|
||||||
|
from talon.signature.bruteforce import extract_signature
|
||||||
|
|
||||||
|
|
||||||
|
message = """Wow. Awesome!
|
||||||
|
--
|
||||||
|
Bob Smith"""
|
||||||
|
|
||||||
|
text, signature = extract_signature(message)
|
||||||
|
# text == "Wow. Awesome!"
|
||||||
|
# signature == "--\nBob Smith"
|
||||||
|
|
||||||
|
Quick and works like a charm 90% of the time. For other 10% you can use
|
||||||
|
the power of machine learning algorithms:
|
||||||
|
|
||||||
|
.. code:: python
|
||||||
|
|
||||||
|
from talon import signature
|
||||||
|
|
||||||
|
|
||||||
|
message = """Thanks Sasha, I can't go any higher and is why I limited it to the
|
||||||
|
homepage.
|
||||||
|
|
||||||
|
John Doe
|
||||||
|
via mobile"""
|
||||||
|
|
||||||
|
text, signature = signature.extract(message, sender='john.doe@example.com')
|
||||||
|
# text == "Thanks Sasha, I can't go any higher and is why I limited it to the\nhomepage."
|
||||||
|
# signature == "John Doe\nvia mobile"
|
||||||
|
|
||||||
|
For machine learning talon currently uses `PyML`_ library to build SVM
|
||||||
|
classifiers. The core of machine learning algorithm lays in
|
||||||
|
``talon.signature.learning package``. It defines a set of features to
|
||||||
|
apply to a message (``featurespace.py``), how data sets are built
|
||||||
|
(``dataset.py``), classifier’s interface (``classifier.py``).
|
||||||
|
|
||||||
|
The data used for training is taken from our personal email
|
||||||
|
conversations and from `ENRON`_ dataset. As a result of applying our set
|
||||||
|
of features to the dataset we provide files ``classifier`` and
|
||||||
|
``train.data`` that don’t have any personal information but could be
|
||||||
|
used to load trained classifier. Those files should be regenerated every
|
||||||
|
time the feature/data set is changed.
|
||||||
|
|
||||||
|
.. _PyML: http://pyml.sourceforge.net/
|
||||||
|
.. _ENRON: https://www.cs.cmu.edu/~enron/
|
||||||
|
|
||||||
|
Research
|
||||||
|
--------
|
||||||
|
|
||||||
|
The library is inspired by the following research papers and projects:
|
||||||
|
|
||||||
|
- http://www.cs.cmu.edu/~vitor/papers/sigFilePaper_finalversion.pdf
|
||||||
|
- http://www.cs.cornell.edu/people/tj/publications/joachims_01a.pdf
|
||||||
4
setup.py
4
setup.py
@@ -7,10 +7,10 @@ from setuptools import setup, find_packages
|
|||||||
|
|
||||||
|
|
||||||
setup(name='talon',
|
setup(name='talon',
|
||||||
version='1.0',
|
version='1.0.2',
|
||||||
description=("Mailgun library "
|
description=("Mailgun library "
|
||||||
"to extract message quotations and signatures."),
|
"to extract message quotations and signatures."),
|
||||||
long_description=open("README.md").read(),
|
long_description=open("README.rst").read(),
|
||||||
author='Mailgun Inc.',
|
author='Mailgun Inc.',
|
||||||
author_email='admin@mailgunhq.com',
|
author_email='admin@mailgunhq.com',
|
||||||
url='https://github.com/mailgun/talon',
|
url='https://github.com/mailgun/talon',
|
||||||
|
|||||||
Reference in New Issue
Block a user