9 Commits

Author SHA1 Message Date
Maxim Vladimirskiy
a8c7e6a972 Merge pull request #226 from mailgun/maxim/develop
PIP-1562: Remove max tags limit [python3]
2022-01-06 15:24:57 +03:00
Maxim Vladimirskiy
b30c375c5b Expose extract_from_html_tree 2022-01-06 15:16:43 +03:00
Maxim Vladimirskiy
cec5acf58f Remove max tags limit 2022-01-06 14:18:11 +03:00
Maxim Vladimirskiy
24d0f2d00a Merge pull request #223 from mailgun/maxim/develop
PIP-1509: Optimise sender name check [python3]
2021-11-19 13:11:29 +03:00
Maxim Vladimirskiy
94007b0b92 Optimise sender name check 2021-11-19 11:12:26 +03:00
Maxim Vladimirskiy
1a5548f171 Merge pull request #222 from mailgun/maxim/develop
PIP-1409: Remove version pins from setup.py [python3]
2021-11-11 16:29:30 +03:00
Maxim Vladimirskiy
53c49b9121 Remove version pins from setup.py 2021-11-11 15:36:50 +03:00
Matt Dietz
bd50872043 Merge pull request #217 from mailgun/dietz/REP-1030
Drops Python 2 support [python3]
2021-06-15 09:46:29 -05:00
Matt Dietz
d37c4fd551 Drops Python 2 support
REP-1030

In addition to some python 2 => 3 fixes, this change bumps the scikit-learn
version to latest. The previously pinned version of scikit-learn failed trying
to compile all necessary C modules under python 3.7+ due to included header files
that weren't compatible with C the API implemented in python 3.7+.

Simultaneously, with the restrictive compatibility supported by scikit-learn,
it seemed prudent to drop python 2 support altogether. Otherwise, we'd be stuck
with python 3.4 as the newest possible version we could support.

With this change, tests are currently passing under 3.9.2.

Lastly, imports the original training data. At some point, a new version
of the training data was committed to the repo but no classifier was
trained from it. Using a classifier trained from this new data resulted
in most of the tests failing.
2021-06-10 14:03:25 -05:00
16 changed files with 2712 additions and 2527 deletions

20
.build/Dockerfile Normal file
View File

@@ -0,0 +1,20 @@
FROM python:3.9-slim-buster AS deps
RUN apt-get update && \
apt-get install -y build-essential git curl python3-dev libatlas3-base libatlas-base-dev liblapack-dev libxml2 libxml2-dev libffi6 libffi-dev musl-dev libxslt-dev
FROM deps AS testable
ARG REPORT_PATH
VOLUME ["/var/mailgun", "/etc/mailgun/ssl", ${REPORT_PATH}]
ADD . /app
WORKDIR /app
COPY wheel/* /wheel/
RUN mkdir -p ${REPORT_PATH}
RUN python ./setup.py build bdist_wheel -d /wheel && \
pip install --no-deps /wheel/*
ENTRYPOINT ["/bin/sh", "/app/run_tests.sh"]

3
.gitignore vendored
View File

@@ -54,3 +54,6 @@ _trial_temp
# OSX
.DS_Store
# vim-backup
*.bak

11
requirements.txt Normal file
View File

@@ -0,0 +1,11 @@
chardet>=1.0.1
cchardet>=0.3.5
cssselect
html5lib
joblib
lxml>=2.3.3
numpy
regex>=1
scikit-learn>=1.0.0
scipy
six>=1.10.0

4
run_tests.sh Executable file
View File

@@ -0,0 +1,4 @@
#!/usr/bin/env bash
set -ex
REPORT_PATH="${REPORT_PATH:-./}"
nosetests --with-xunit --with-coverage --cover-xml --cover-xml-file $REPORT_PATH/coverage.xml --xunit-file=$REPORT_PATH/nosetests.xml --cover-package=talon .

View File

@@ -19,17 +19,17 @@ class InstallCommand(install):
if self.no_ml:
dist = self.distribution
dist.packages=find_packages(exclude=[
'tests',
'tests.*',
'talon.signature',
'talon.signature.*',
"tests",
"tests.*",
"talon.signature",
"talon.signature.*",
])
for not_required in ['numpy', 'scipy', 'scikit-learn==0.16.1']:
for not_required in ["numpy", "scipy", "scikit-learn==0.24.1"]:
dist.install_requires.remove(not_required)
setup(name='talon',
version='1.4.8',
version='1.5.0',
description=("Mailgun library "
"to extract message quotations and signatures."),
long_description=open("README.rst").read(),
@@ -44,20 +44,21 @@ setup(name='talon',
include_package_data=True,
zip_safe=True,
install_requires=[
"lxml>=2.3.3",
"regex>=1",
"lxml",
"regex",
"numpy",
"scipy",
"scikit-learn==0.16.1", # pickled versions of classifier, else rebuild
'chardet>=1.0.1',
'cchardet>=0.3.5',
'cssselect',
'six>=1.10.0',
'html5lib'
"scikit-learn>=1.0.0",
"chardet",
"cchardet",
"cssselect",
"six",
"html5lib",
"joblib",
],
tests_require=[
"mock",
"nose>=1.2.1",
"nose",
"coverage"
]
)

View File

@@ -193,9 +193,6 @@ RE_PARENTHESIS_LINK = re.compile("\(https?://")
SPLITTER_MAX_LINES = 6
MAX_LINES_COUNT = 1000
# an extensive research shows that exceeding this limit
# leads to excessive processing time
MAX_HTML_LEN = 2794202
QUOT_PATTERN = re.compile('^>+ ?')
NO_QUOT_LINE = re.compile('^[^>].*[\S].*')
@@ -421,25 +418,31 @@ def extract_from_html(msg_body):
Returns a unicode string.
"""
msg_body_bytes = msg_body
if isinstance(msg_body, six.text_type):
msg_body = msg_body.encode('utf8')
elif not isinstance(msg_body, bytes):
msg_body = msg_body.encode('ascii')
msg_body_bytes = msg_body.encode('utf8')
result = _extract_from_html(msg_body)
if isinstance(result, bytes):
result = result.decode('utf8')
if msg_body_bytes.strip() == b'':
return msg_body
msg_body_bytes = msg_body_bytes.replace(b'\r\n', b'\n')
# Cut out xml and doctype tags to avoid conflict with unicode decoding.
msg_body_bytes = re.sub(br"\<\?xml.+\?\>|\<\!DOCTYPE.+]\>", b"", msg_body_bytes)
html_tree = html_document_fromstring(msg_body_bytes)
if html_tree is None:
return msg_body
result = extract_from_html_tree(html_tree)
if not result:
return msg_body
return result
def _extract_from_html(msg_body):
def extract_from_html_tree(html_tree):
"""
Extract not quoted message from provided html message body
using tags and plain text algorithm.
Cut out first some encoding html tags such as xml and doctype
for avoiding conflict with unicode decoding
Extract not quoted message from provided parsed html tree using tags and
plain text algorithm.
Cut out the 'blockquote', 'gmail_quote' tags.
Cut Microsoft quotations.
@@ -452,18 +455,6 @@ def _extract_from_html(msg_body):
then checking deleted checkpoints,
then deleting necessary tags.
"""
if msg_body.strip() == b'':
return msg_body
msg_body = msg_body.replace(b'\r\n', b'\n')
msg_body = re.sub(r"\<\?xml.+\?\>|\<\!DOCTYPE.+]\>", "", msg_body)
html_tree = html_document_fromstring(msg_body)
if html_tree is None:
return msg_body
cut_quotations = (html_quotations.cut_gmail_quote(html_tree) or
html_quotations.cut_zimbra_quote(html_tree) or
html_quotations.cut_blockquote(html_tree) or
@@ -481,7 +472,7 @@ def _extract_from_html(msg_body):
# Don't process too long messages
if len(lines) > MAX_LINES_COUNT:
return msg_body
return None
# Collect checkpoints on each line
line_checkpoints = [
@@ -500,7 +491,7 @@ def _extract_from_html(msg_body):
lines_were_deleted, first_deleted, last_deleted = return_flags
if not lines_were_deleted and not cut_quotations:
return msg_body
return None
if lines_were_deleted:
#collect checkpoints from deleted lines
@@ -514,7 +505,7 @@ def _extract_from_html(msg_body):
)
if _readable_text_empty(html_tree_copy):
return msg_body
return None
# NOTE: We remove_namespaces() because we are using an HTML5 Parser, HTML
# parsers do not recognize namespaces in HTML tags. As such the rendered
@@ -540,7 +531,11 @@ def _extract_from_html(msg_body):
# of replacing data outside the <tag> which might be essential to
# the customer.
remove_namespaces(html_tree_copy)
return html.tostring(html_tree_copy)
s = html.tostring(html_tree_copy)
if not s:
return None
return s.decode('utf-8')
def remove_namespaces(root):

View File

@@ -23,17 +23,14 @@ trained against, don't forget to regenerate:
from __future__ import absolute_import
import os
from . import extraction
from . extraction import extract #noqa
from . learning import classifier
DATA_DIR = os.path.join(os.path.dirname(__file__), 'data')
EXTRACTOR_FILENAME = os.path.join(DATA_DIR, 'classifier')
EXTRACTOR_DATA = os.path.join(DATA_DIR, 'train.data')
from talon.signature import extraction
from talon.signature.extraction import extract
from talon.signature.learning import classifier
def initialize():
extraction.EXTRACTOR = classifier.load(EXTRACTOR_FILENAME,
EXTRACTOR_DATA)
data_dir = os.path.join(os.path.dirname(__file__), 'data')
extractor_filename = os.path.join(data_dir, 'classifier')
extractor_data_filename = os.path.join(data_dir, 'train.data')
extraction.EXTRACTOR = classifier.load(extractor_filename,
extractor_data_filename)

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@@ -8,7 +8,7 @@ body belongs to the signature.
from __future__ import absolute_import
from numpy import genfromtxt
from sklearn.externals import joblib
import joblib
from sklearn.svm import LinearSVC

View File

@@ -102,7 +102,7 @@ def flatten_list(list_to_flatten):
def contains_sender_names(sender):
'''Returns a functions to search sender\'s name or it\'s part.
"""Returns a functions to search sender\'s name or it\'s part.
>>> feature = contains_sender_names("Sergey N. Obukhov <xxx@example.com>")
>>> feature("Sergey Obukhov")
@@ -115,7 +115,7 @@ def contains_sender_names(sender):
1
>>> contains_sender_names("<serobnic@mail.ru>")("serobnic")
1
'''
"""
names = '( |$)|'.join(flatten_list([[e, e.capitalize()]
for e in extract_names(sender)]))
names = names or sender
@@ -140,10 +140,16 @@ def extract_names(sender):
sender = "".join([char if char.isalpha() else ' ' for char in sender])
# Remove too short words and words from "black" list i.e.
# words like `ru`, `gmail`, `com`, `org`, etc.
sender = [word for word in sender.split() if len(word) > 1 and
not word in BAD_SENDER_NAMES]
# Remove duplicates
names = list(set(sender))
names = list()
for word in sender.split():
if len(word) < 2:
continue
if word in BAD_SENDER_NAMES:
continue
if word in names:
continue
names.append(word)
return names
@@ -208,20 +214,26 @@ def many_capitalized_words(s):
def has_signature(body, sender):
'''Checks if the body has signature. Returns True or False.'''
"""Checks if the body has signature. Returns True or False."""
non_empty = [line for line in body.splitlines() if line.strip()]
candidate = non_empty[-SIGNATURE_MAX_LINES:]
upvotes = 0
sender_check = contains_sender_names(sender)
for line in candidate:
# we check lines for sender's name, phone, email and url,
# those signature lines don't take more then 27 lines
if len(line.strip()) > 27:
continue
elif contains_sender_names(sender)(line):
if sender_check(line):
return True
elif (binary_regex_search(RE_RELAX_PHONE)(line) +
if (binary_regex_search(RE_RELAX_PHONE)(line) +
binary_regex_search(RE_EMAIL)(line) +
binary_regex_search(RE_URL)(line) == 1):
upvotes += 1
if upvotes > 1:
return True
return False

View File

@@ -180,9 +180,6 @@ def html_fromstring(s):
if isinstance(s, six.text_type):
s = s.encode('utf8')
try:
if html_too_big(s):
return None
return html5parser.fromstring(s, parser=_html5lib_parser())
except Exception:
pass
@@ -194,9 +191,6 @@ def html_document_fromstring(s):
if isinstance(s, six.text_type):
s = s.encode('utf8')
try:
if html_too_big(s):
return None
return html5parser.document_fromstring(s, parser=_html5lib_parser())
except Exception:
pass
@@ -206,12 +200,6 @@ def cssselect(expr, tree):
return CSSSelector(expr)(tree)
def html_too_big(s):
if isinstance(s, six.text_type):
s = s.encode('utf8')
return s.count(b'<') > _MAX_TAGS_COUNT
def _contains_charset_spec(s):
"""Return True if the first 4KB contain charset spec
"""
@@ -258,7 +246,3 @@ _BLOCKTAGS = ['div', 'p', 'ul', 'li', 'h1', 'h2', 'h3']
_HARDBREAKS = ['br', 'hr', 'tr']
_RE_EXCESSIVE_NEWLINES = re.compile("\n{2,10}")
# an extensive research shows that exceeding this limit
# might lead to excessive processing time
_MAX_TAGS_COUNT = 419

3
test-requirements.txt Normal file
View File

@@ -0,0 +1,3 @@
coverage
mock
nose>=1.2.1

View File

@@ -391,18 +391,6 @@ def test_gmail_forwarded_msg():
eq_(RE_WHITESPACE.sub('', msg_body), RE_WHITESPACE.sub('', extracted))
@patch.object(u, '_MAX_TAGS_COUNT', 4)
def test_too_large_html():
msg_body = 'Reply' \
'<div class="gmail_quote">' \
'<div class="gmail_quote">On 11-Apr-2011, at 6:54 PM, Bob &lt;bob@example.com&gt; wrote:' \
'<div>Test</div>' \
'</div>' \
'</div>'
eq_(RE_WHITESPACE.sub('', msg_body),
RE_WHITESPACE.sub('', quotations.extract_from_html(msg_body)))
def test_readable_html_empty():
msg_body = """
<blockquote>

View File

@@ -826,10 +826,10 @@ The user experience was unparallelled. Please continue production. I'm sending p
that this line is intact."""
parsed = quotations.extract_from_plain(msg_body)
eq_(msg_body, parsed.decode('utf8'))
eq_(msg_body, parsed)
def test_appointment():
def test_appointment_2():
msg_body = """Invitation for an interview:
Date: Wednesday 3, October 2011
@@ -838,4 +838,4 @@ Address: 130 Fox St
Please bring in your ID."""
parsed = quotations.extract_from_plain(msg_body)
eq_(msg_body, parsed.decode('utf8'))
eq_(msg_body, parsed)

View File

@@ -125,39 +125,13 @@ def test_html_fromstring_exception():
eq_(None, u.html_fromstring("<html></html>"))
@patch.object(u, 'html_too_big', Mock())
@patch.object(u.html5parser, 'fromstring')
def test_html_fromstring_too_big(fromstring):
eq_(None, u.html_fromstring("<html></html>"))
assert_false(fromstring.called)
@patch.object(u.html5parser, 'document_fromstring')
def test_html_document_fromstring_exception(document_fromstring):
document_fromstring.side_effect = Exception()
eq_(None, u.html_document_fromstring("<html></html>"))
@patch.object(u, 'html_too_big', Mock())
@patch.object(u.html5parser, 'document_fromstring')
def test_html_document_fromstring_too_big(document_fromstring):
eq_(None, u.html_document_fromstring("<html></html>"))
assert_false(document_fromstring.called)
@patch.object(u, 'html_fromstring', Mock(return_value=None))
def test_bad_html_to_text():
bad_html = "one<br>two<br>three"
eq_(None, u.html_to_text(bad_html))
@patch.object(u, '_MAX_TAGS_COUNT', 3)
def test_html_too_big():
eq_(False, u.html_too_big("<div></div>"))
eq_(True, u.html_too_big("<div><span>Hi</span></div>"))
@patch.object(u, '_MAX_TAGS_COUNT', 3)
def test_html_to_text():
eq_(b"Hello", u.html_to_text("<div>Hello</div>"))
eq_(None, u.html_to_text("<div><span>Hi</span></div>"))